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Abstract
Intervertebral disc degeneration (IDD) is a chronic,
complex process associated with low back pain;
mechanisms of its occurrence have not yet been
fully elucidated. Its process is not only accompa-
nied by morphological changes, but also by sys-
tematic changes in its histological and biochemical
properties. Many cellular and molecular mecha-
nisms have been reported to be related with IDD
and to reverse degenerative trends, abnormal condi-
tions of the living cells and altered cell phenotypes
would need to be restored. Promising biological
therapeutic strategies still rely on injection of active
substances, gene therapy and cell transplantation.
With advanced study of tissue engineering proto-
cols based on cell therapy, combined use of seed-
ing cells, bio-active substances and bio-compatible
materials, are promising for IDD regeneration.
Recently reported progenitor cells within discs
themselves also hold prospects for future IDD stud-
ies. This article describes the background of IDD,
current understanding and implications of potential
therapeutic strategies.

Introduction

Intervertebral disc degeneration (IDD) is perhaps best
defined as a cascade that begins with changes to the
local cellular microenvironment and progresses to
impairment of their structure and function (1). Prominent
changes to IDD are characterized by reduction in active
cell numbers, depletion of extracellular matrix (ECM),

altered phenotype of normal disc cells, and presence of
pro-inflammatory cytokines and mediators (2,3). These
cell and molecular changes impose a profound influence
on progress of IDD and further impair normal function
of the intervertebral disc (IVD) and a patient’s quality
of life. Aetiology of IDD is difficult to precisely charac-
terized, as the degenerative progression can be attributed
to multiple factors (4). Ageing, living conditions and
biomechanical loading are often related to it; genetic
factors can also result in disc degeneration (5). This
review article attempts to summarize current understand-
ing of molecular and cellular biology in normal and
pathological IVD, as well as to account for potential
biological therapeutic strategies for clinical application.

Overview of IDD

According to recent statistics, low back pain (LBP)
affects more than half our population during their lives
and impacts heavily on the economy and quality of life
of the patients (6,7). With progression in understanding
of IDD, many techniques including examination, imag-
ing investigations (8) and trials of intervention (9) have
been applied from different directions, to discover
causes of the syndrome and to alleviate the pain. IDD
can play a pivotal role in LBP and correlates with disc
structural breakdown and dysfunction.

Disc degeneration often occurs with advances in
ageing, and water content and proteoglycans reduce
gradually (10). Lower aggrecan content leads to dehy-
dration which in turn also impairs mechanical functions
(11,12). In addition, genetic, mechanical, environmental
and behavioural factors must also be taken into consid-
eration (13).

Over the last two decades, underlying mechanisms
of IVD metabolism have benefitted from significant pro-
gress. New techniques to examine human tissues, such
as immunohistochemistry (14), in situ zymography (15),
in situ hybridization (16) and quantitative image analysis
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(17) have helped to update understanding of mecha-
nisms of IDD.

Current therapeutic strategies to assuage disc degen-
eration mainly lie in conservative therapies, including
physiotherapy and anti-inflammatory medication.
Although these conservative strategies are often able to
alleviate symptoms, actual causes of the degeneration
are not addressed. When considering spinal surgery,
however, adjacent spine segments may experience high
risk of accelerated degeneration post-operatively (18,19);
thus novel therapeutics have emerged and brought new
light to address the issue. With the advent of biotherapy,
innovative methods may help to restore disc structure
and mechanical function.

Structure and function of the IVD

The IVD is a viscoelastic weight-bearing ‘cushion’
which plays a major role in maintaining flexibility and
stability of the spine (20). Anatomically, the outer
region [annulus fibrosus (AF)] is composed of lamellae
mainly of bundles of type I collagen. The AF is oriented
to alternate lamellae to form an angle-ply structure
(21,22). Central region of the IVD [nucleus pulposus
(NP)] consists of type II collagen and aggrecan, but net-
works of the type II collagen are less organized com-
pared to type I collagen of the AF.

The space-filling proteoglycan accounts for the most
part of the NP and forms large macromolecular aggre-
gates enclosed by the type II collagen network (23).
Versican is a further kind of IVD proteoglycan, found
in regions between adjacent annular lamellae, which
may lubricate collagen bundles (24–26). These networks
effectively mobilize water content of the disc and main-
tain its internal hydrostatic pressure. There are two thin
cartilaginous endplates (EP). EP extend superiorly and
inferiorly over the inner AF and NP to separate vertebral
bodies and supply nutrients to discs by diffusion (27).
The EP provides resilience to prevent collision between
vertebral bodies and absorbs load transmitted.

The main function of the IVD is mechanical, it
transfers load and provides spinal mobility. Biomechan-
ics play an important role in the process of IDD; unu-
sual complex injury or trauma are often considered to
be its major risk factors. Interactions between NP and
AF structures contribute to distribution and transmission
of the loads between the vertebral bodies (28). When a
disc is under high load, hydrostatic pressure is generated
within the NP then conducted to the outer AF, generat-
ing circumferential stress within the lamellar structure
(29). Pressure can also be supported by the inner AF,
and proteoglycans may serve as a cushioned pad to slow
this process (30). High loads are generated by the

human upright posture and load-bearing activities.
Under these, the IVD deforms and its hydrostatic pres-
sure increases. Fluid is slowly squeezed out of the disc
which further results in higher osmolarity and lower pH.
Loading affects IVD cell metabolism, as changes in
physical microenvironment of cells, including fluid con-
tent, osmolarity and pH, change the supply of nutrients
and bioactive factors within the disc.

Cell and molecular biology of the normal IVD

Cell and molecular biology of IDD are not totally clear,
but most experts believe that it is caused by many fac-
tors. Increase in pro-inflammatory cytokines, reduction
in disc cell numbers and impaired cell viability are nor-
mal changes that occur to ageing discs. These lead to
modifications in cell and molecular composition of the
IVD. A better understanding of normal cell and molecu-
lar development of the IVD will help us correct current
errors and discover ideal therapeutic strategies.

Cell components of IVD and their inter-relationships

The cell population executes crucial machinery for syn-
thesizing and maintaining the IVD matrix. Most cells
found in adult NP are small and chondrocyte-like. How-
ever, in both juveniles and adults, a further cell type has
been proposed to function in renewal and homoeostasis
of the IVD. These are large vacuolated cells of noto-
chordal origin (31). Loss of notochordal cells coincides
with the onset of IDD which suggests that this cell pop-
ulation may be involved in maintenance and regenera-
tion of the IVD (32). Human notochord cells have been
observed to gradually disappear with ageing, and their
depletion correlates with disc degeneration (33,34). It
should also be acknowledged that during the process of
disc degeneration, there is remoulding of NP and AF tis-
sues. Based on previous reports, early degenerate adult
discs may preserve a population of skeletal progenitor
cells. To make this perspective more clear and to assert
whether this kind of progenitor/stem cell really exists in
human IVDs, innovative studies have confirmed their
presence (35,36). These studies indicated that progenitor
cells were present in AF and NPs and express a reper-
toire of membrane markers common to bone marrow
stem cells. Further investigations ensured their presence
and defined tissue zones of the skeletal progenitors in
the mature rat (37).

More recently, a study undertaken by Sakai et al.
(38) identified populations of progenitor cells that were
Tie2 positive (Tie2+) and disialoganglioside 2 positive
(GD2+) in NP from mice and from humans. This study
has far-reaching impact on our present understanding of
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cell types of the IVD. They express type II collagen and
aggrecan and also they can differentiate into mesenchy-
mal lineages and induce reorganization of NP tissues.
Tie2, GD2 and CD24 were proposed to be important
markers for recognition of hierarchy of progenitor cells
isolated from NP. The sequence originated from
Tie2+GD2-CD24- cells, followed in order by Tie2-
GD2+CD24- cells and Tie2-GD2-CD24- cells. Of these,
Tie2-GD2+CD24- cells had better self-renewal capacity
and NP tissue reorganization potential. This improved
our current information in understanding IVD cell
biology.

ECM components of IVD and their role

Structure of the IVD changes with advancing age, spe-
cially in composition of disc ECM; these eventually can
lead to IDD. Type I and II collagens are the main com-
ponents of the IVD, accounting for in the region of 80%
of IVD collagen between them. Type I collagen makes
up major parts of the outer AF and plays an important
role in anti-stretching and repairing damaged tissue (39).
Type II collagen is mainly located in inner layers of the
AF and NP with the functions of maintaining water con-
tent, withstanding and absorbing conductive pressure
(40). The major proteoglycan of the disc is aggrecan
which occounts for osmotic properties and helps main-
tain disc height and ability to withstand compression
(41,42).

Molecular biology of the IVD: mechanisms of IVD
homoeostasis

The molecular biology of the IVD is complex, with
many growth factors, genes and proteinases involved.
These molecules coordinate with each other and main-
tain homoeostasis (Fig. 1). Transforming growth factor-
b (TGF-b) is comprised of a series of peptides and is
considered to have the highest relative relationship with
collagen metabolism. TGF-b not only regulates synthe-
sis of collagen and proteoglycan, but also affects IVD
metabolism. PR-PCR techniques suggest that TGF-b is

a key factor in maintenance and degenerating processes
of the IVD (43). Current study has revealed that TGF-b
signalling is essential for endplate cartilage growth over
post-natal life (44). Bone morphogenic protein (BMP) is
also a multi-functional growth factor, belonging to TGF-
b superfamily. BMP receptors are found in the IVD, fur-
ther indicating that its cells react to growth factors of
the BMP superfamily (45). Further investigation indi-
cated that the ligand–receptor model is the way in which
BMP plays a pivotal role to regulate events of the IVD,
such as increasing synthesis of proteoglycan, upregulat-
ing mRNA expression of type II collagen and serving as
mitotic agent (46,47). Under hypoxic conditions, NP
cells upregulate expression of vascular endothelial
growth factor-A (VEGFA) and its receptor and mem-
brane-bound vascular endothelial growth factor receptor-
1 (mbVEGFR-1), which plays an important role in
survival of NP cells (48). Currently, Ang-1, a ligand of
Tie2 was reported to have an innate anti-apoptotic effect
on hNP cells by Sakai et al. (38). According to their
study, when added the Tie2-blocking antibody to the
serum-free culture medium, the number of apoptotic NP
cells increased about 2-fold.

Molecular biology of the IVD is complex, with
many growth factors, genes and proteinases involved.
These coordinate with each other to promote synthesis
of matrix and survival of disc cells, which help to main-
tain IVD homoeostasis.

The Sox9 gene is a member of the Sox gene family
and is an important transcription factor in the process of
type II collagen synthesis. In development of cartilage,
Sox9 is an enhancer of type II collagen and remains the
most promising gene target for IVD regeneration. When
transfected with adenovirus-mediated Sox9, IVD cells
proliferate, and synthesis of proteoglycan and type II
collagen follows an upward trend (49,50).

The IVD is the largest human avascular organ which
lacks all immune cells. Destruction of the immune status
may lead to degeneration of the IVD. Fas is a type I
transmembrane glycoprotein of disc cells. When the Fas
ligand of type II transmembrane glycoprotein binds to
FasL antibody, death signals are passed into the cell

Figure 1. Sagittal structure and homoeo-
stasis of the intervertebral disc.
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which further results in degeneration of the IVD
(51,52).

Matrix metalloproteinases (MMP) are proteolytic
enzymes with metal ions structured within them. They
can be divided into five subfamilies, of which MMP-3
is a matrix enzyme, playing a significant role in degra-
dation of the ECM; imbalance of these enzymes and
their inhibitors may lead to IDD (53–55). Interleukin
(IL) is mainly derived from bone marrow stromal cells,
monocytes, macrophages, myeloma cells and osteo-
blasts. IL-1, a single nuclear factor, is composed of both
IL-1a and IL-1b. IL-1 may initiate nerve root pain
induced by other inflammatory factors. In addition, IL-
1b can stimulate the IVD to release MMPs which
degrade proteoglycan, with concentration and time
dependency. In addition, IL-1b increases the body’s sen-
sitivity to pain and plays an important role in metabo-
lism of the cartilage matrix (56). Other ILs are also
found in the IVD, such as IL-6, which may induce sciat-
ica and aggregate inflammatory responses in it.

Cell and molecular hallmarks of IDD

Degenerative changes to the IVD are accompanied by
cell and molecular changes. Wide genetic studies have
been able to prove the importance of heredity in pro-
cesses of IDD (57–59), and at least 14 genes have been
shown to be associated with disc degeneration, although
their specific functions at the moment remain unknown.
Recent investigations have revealed that IL6, SKT and
CILP are involved in aetiology of IDD in young adults
(60–62). According to work by Seki et al. (63), CILP
protein plays an important role in IVD homoeostasis,
based on controlling TGF-b signals. Several other genes,
such as those that code for aggrecan, MMP-3 and type-
IX collagen, may affect structure and progression of
IDD, which still need further investigation.

With harsh conditions of nutrient diffusion through
the cartilaginous EP, IVD may undergo continuous
increase in levels of cell death (64). However, prolifera-
tion is also often seen in degenerating IVD, specially
amongst chondrocyte-like cells (65). Cell death is so
commonly observed that it has been taken as an indica-
tor of IDD; as there are no efficient phagocytes in the
disc, dead cells are not promptly removed and remain in
the matrix for relatively long periods of time. Dead
cells, together with proliferating cells eventually increase
cell density (66–68). Meanwhile, numbers of viable cells
do not increase with cell density, their number decreases
with ageing and degeneration (69). Degenerate disc cells
generally have an altered phenotype which includes
changes in morphology, metabolism gene expression
and more. These features of degenerate cells have been

observed as accelerated cell senescence (70). It has been
reported that degenerate annular cells become more
rounded and chondrocytic, whereas under normal condi-
tions, they are more spindle shaped (71). Annular cells
have stellate appearance during degenerative events,
with multiple, branching cytoplasmic processes extend-
ing into their surrounding matrix (72).

During ageing, numbers of notochordal cells reduce
and vary towards more chondrogenic phenotype,
observed in the NP region (73). Although the mecha-
nism of disappearance of notochordal cells is unknown,
apoptosis induced by antocrine or paracrine Fas-medi-
ated counterattack are suspected in the process (74).
Without sufficient number and activity of cells, the IVD
is not able to produce and maintain large matrix mole-
cules which further aggravate loss of proteoglycans and
shift in collagen synthesis. Specifically, type I collagen,
rarely present in the NP begins to be expressed, while
type II collagen, the main NP collagen, is sharply down-
regulated (75).

Up to now, progenitor cells within discs have been
poorly characterized. Tie2+ cells in NP tissues have
recently been proven to be progenitor cells, with self-
renewal capacity and multiple differentiation potential
(38). Frequency of Tie2+ NP cells reduces with increas-
ing age and is correlated to extent of disc degeneration,
which strongly suggests that exhaustion of these cells
may cause IVD degeneration itself.

Relevance of cell and molecular biology to
potential therapies for IDD

During the process of disc degeneration, reduction in
number of viable cells and phenotypic changes to live
ones need to be taken into consideration when designing
any biological therapeutic applications. Direct injection
of active substance therapy, gene therapy and cell trans-
plantation therapy remain to be promising biological
strategies.

Active substances therapy

The most direct technique of delivering active sub-
stances to disc cells is injection into the IVD; promising
results have been reported. Direct injection aims to pro-
mote synthesis of proteoglycan, and restoration of disc
height. Many active substances, including multiple cyto-
kines and growth factors, are able to move a cell cata-
bolic state to an anabolic one, which is significant in
maintaining IVD homoeostasis. Taking clinical applica-
tions into consideration, active substance injection into
discs is less invasive compared to traumatic surgery,
specially when under guidance of fluoroscopy.
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A range of studies in vivo has confirmed efficacy of
bio-active substances, when used to repair and regener-
ate degenerate discs (Table 1). In an early murine IDD
model, Walsh et al. (76) compared regenerative effects
of a variety of growth factors, including growth and dif-
ferentiation factor (GDF)-5, TGF-b, insulin-like growth
factor (IGF)-1 and basic fibroblast growth factor (bFGF).
IGF-1 and TGF-b induced expansion of inner annular fi-
brochondrocyte populations which actively expressed
aggrecan and type II collagen mRNA. The growth fac-
tors tested increased cellularity and improved prolifera-

tion and a statistically significant increase in disc height
was measured after GDF-5 treatment. In a rabbit IDD
model, GDF-5 was also proven to be an effective bio-
active substance for its regeneration potential, including
restoration of disc height, improvement in magnetic res-
onance imaging scores and histological grading scores
(77). Osteogenic protein (OP)-1 is a promising growth
factor for its potential in stimulating production and for-
mation of the ECM. Kawakami et al. (78) have demon-
strated that OP-1 injection into degenerate rat discs
increased ECM and inhibited pain-related behaviour.

Table 1. Growth factors confirmed to have regenerative potential in degenerate intervertebral discs: in vivo studies

Growth
factors Carriers Species

Animal model
of disc
degeneration Outcome Study Year

TGF-b (�) Adult, male Swiss
Webster mice

Caudal disc
compression

Greater percentage of proliferating
cells and increased population of
anular fibrochondrocytes

Walsh et al. (76) 2004

IGF-1 (�) Adult, male Swiss
Webster mice

Caudal disc
compression

Upward trend in cell density Walsh et al. (76) 2004

bFGF (�) Adult, male Swiss
Webster mice

Caudal disc
compression

Upward trend in cell density Walsh et al. (76) 2004

OP-1 (�) Male
Sprague-Dawley
rats

Caudal disc
compression

Increased extracellular matrix without
mechanical hyperalgesia

Kawakami et al. (78) 2005

OP-1 (�) New Zealand white
rabbits

Age-related disc
degeneration

Increased disc height index and
proteoglycan content

An et al. (79) 2005

OP-1 (�) New Zealand white
rabbits

Needle puncture Restoration of disc height; increase in
water content and proteoglycan content

Masuda et al. (80) 2006

OP-1 (�) New Zealand white
rabbits

Needle puncture Restoration of disc height and
biomechanical properties; increase in
proteoglycan and collagen content

Yoshiyuki et al. (81) 2006

OP-1 (�) New Zealand white
rabbits

Enzymatic digestion
by chondroitinase
ABC injection

Reverse of reduction in disc height Imai Y et al. (82) 2007

GDF-5 (�) Male Swiss Webster
mice

Caudal disc
compression

Upward trend in cell density and
increase in disc height

Walsh et al. (76) 2004

GDF-5 (�) New Zealand white
rabbits

Needle puncture Restoration of disc height, improvement
of magnetic resonance imaging scores,
and histological grading scores

Chujo et al. (77) 2006

PRP Gelatin
hydrogel
microspheres

Male Japanese white
rabbits

Nucleus pulposus
aspiration
(0.005–0.008 ng)

Suppressed progress of IVD
degeneration

Nagae et al. (84) 2007

PRP Gelatin
hydrogel
microspheres

Male Japanese white
rabbits

Nucleus pulposus
aspiration
(0.005–0.008 ng)

Preserved disc height and water content;
higher mRNA expression levels of PG
core protein and type II collagen

Sawamura et al. (85) 2009

PRP (�) Sprague–Dawley rats Needle puncture Fewer inflammatory cells and higher
fluid content on MRI

Gullung et al. (86) 2011

PRP (�) New Zealand white
rabbits

Needle puncture Restoration of disc height; higher
quality of chondrocyte-like cells

Obata et al. (87) 2012

PRP (�) New Zealand white
rabbits

Needle puncture Increased production of extracellular
matrix and maintained MRI signal
intensity

Hu et al. (88) 2012

Active substances listed above have exhibited promising potential in regeneration of degenerate discs, indicating potential for active substance ther-
apy.
TGF-b1, transforming growth factor-b1; IGF-1, insulin-like growth factor-1; bFGF, basic fibroblastic growth factor; OP-1, osteogenic protein-1;
GDF-5, growth and differentiation factor-5; PRP, platelets-rich plasma.
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Subsequently, in the rabbit IDD models, several studies
have shown the regenerative efficacy of OP-1 in degen-
erate discs (79–82).

However, single growth factor injection may have
limitations, as it seems that no single growth factor is
potent enough to reverse degenerative trends. As a natu-
ral carrier of multiple growth factors, platelet-rich
plasma (PRP) has been introduced into the field of IVD
regeneration and enjoys some popularity. PRP is used as
a fraction of autologous plasma with high platelet con-
centration. When activated, platelets from PRP release
multiple growth factors, including PDGF, GDF-5, TGF-
b, vascular endothelial growth factor, bFGF, endothelial
growth factor and connective tissue growth factor,
among others (83). Some studies have proposed that
PRP might be an ideal active substance to serve as a
cocktail in a strategy of multiple growth factors (84–88).
Nagae et al. (84) injected PRP carried by gelatin hydro-
gel microspheres into rabbit degenerate discs, prepared
by NP aspiration. Growth factors released successfully
suppressed progress of IVD degeneration. Further work
by this team has confirmed that PRP injection preserved
disc height and water content and expression levels of
proteoglycan core protein and type II collagen were also
upregulated (85). In a further study, Gullung et al. (86)
showed by MRI that PRP reduced inflammatory cells,
while increasing fluid content. In a rat IDD model, Oba-
ta et al. (87) suggested that PRP was able to restore disc
height and increase numbers of chondrocyte-like cells.
A study from our team using PRP in an early rabbit
IDD model, also confirmed its regenerative efficacy
(88).

Gene therapy

When genes encoding active growth factors are trans-
fected into disc cells, they stably express the corre-
sponding gene products which help to promote cell
proliferation and ECM accumulation. Compared to bio-
active substance injection therapy, gene therapy is supe-
rior due to its continuous effect of stimulating the sus-
tained expression of ECM. Gene carriers are mainly of
two types, viral vectors and non-viral vectors. In one
animal study, Seki et al. (89) evaluated suppressive
effects of injections of ADAMTS5 small interference
RNA (siRNA) oligonucleotide and results confirmed its
efficacy as a potential non-viral vector for gene therapy
of IDD. Non-viral vectors are safer, but transfection
rates end to be rather low. Thus, viral vectors are supe-
rior in current gene therapies. Sai et al. (90) constructed
an adeno-associated virus expression system for TGF-
beta3, and confirmed its efficacy in enhancing proteogly-
can synthesis of earlier and later dedifferentiated NP

cells. For AF gene therapy, lentiviral shRNA silencing
of CHOP (C/EBP homologous protein), which is apop-
tosis regulated, was proven to inhibit stretching-induced
apoptosis in AF cells and to improve MRI and histologi-
cal scores in a rat model (91). Moon et al. (92) exam-
ined biological effects of ‘cocktail’ therapeutic gene
transfer into human IVD cells in three-dimensional cul-
tures. The recombinant adenovirus bore TGF-beta1 gene
(Ad/TGF-beta1), IGF-1 gene (Ad/IGF-1) and BMP-2
gene (Ad/BMP-2). Results confirmed that human IVD
cultures with triple gene combination transfer demon-
strated synergistic amplification effect in proteoglycan
synthesis. However, even if production of the respective
gene product could be achieved, it should be noted that
only if surrounding, starving cells are able to properly
respond can an improved matrix be produced. Moreover,
with utilization of adenovirus vectors, viruses can trans-
fect other tissues when delivered into the discs (93). As
a potential therapy, safety of gene transfer needs to be
further investigated, but at the moment, for clinical pur-
poses, non-virus transfection is safer.

Cell transplantation

Cell transplantation is an ideal approach for IVD regen-
eration, as this type of therapy can increase both number
of viable cells and accumulation of matrix components.
Complete structure of the IVD is considered to play an
important role in limiting the immune response after cell
transplantation. Cells from the NP have been reported to
express Fas ligand (FasL) which is immune privileged
(94,95). Thus, some studies considered the ideal cell
candidate may be disc cells themselves (96,97). How-
ever, preparation of NP cells for re-implantation is lim-
ited as autologous transplantation requires large numbers
of cells, and harvesting them from healthy discs may
create unnecessary degeneration of the donor’s discs.

As a potential substitute for native disc cells, mesen-
chymal stem cell (MSC) transplantation holds a better
prospect for IVD regeneration (98,99). MSCs are capa-
ble of long-term self-renewal and can differentiate into a
variety of specialized cells. Also, injection of stem cells
into the IVD has confirmed them to migrate to the inner
AF for repair and regeneration (100). Synergistic effects
of certain active growth factors have been reported to be
effective in induction of chondrogenic differentiation of
bone marrow mesenchymal stem cells (BMMSCs) in vi-
tro for potential application in IVD repair (41). When
co-cultured with NP cells, MSC exhibited enhanced pro-
liferation and telomerase activity over NP cells cultured
alone (101,102). Thus, NP cells and MSCs may be
mixed together as seeding cells for disc regeneration
applications. Some studies have illustrated stimulatory
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effects of notochordal cell conditioned medium on
native IVD cells and chondrocytes (103–106). Results
clearly demonstrated the ability of notochord-condi-
tioned media to direct differentiation of MSCs. Maka-
rand et al. (107) reported evidence for skeletal
progenitor cells in degenerate human IVDs. This finding
suggested that these endogenous progenitors may be
applied to repair degenerate discs. Further investigations
revealed locations of these progenitor cells within the
IVD (37). A further study identified MSCs from degen-
erate human NP and indicated that these NP-derived
MSCs were similar to MSCs from bone marrow (108).
These findings suggest that stimulating endogenous
MSCs of the IVD may be a new target for IDD regener-
ation strategies.

Recently, tissue engineering strategies based on cell
transplantation have enjoyed more popularity (109,110).
Tissue engineering is the combined use of seeding cells,
biological scaffolds and bioactive substances. The bio-
logical scaffold provides a more suitable micro-environ-
ment to help retain cell morphology and provides
primary mechanical stability. In a recent study, a biode-
gradable AF closure system comprised of a diisocyanate
glue, based on polyethylene glycol-PTMC triblock co-
polymers, a supporting membrane and an adhesive mate-
rial, was proven to be a promising potential tissue
engineering method to restore function of herniated discs
(111). Above, we mentioned PRP as a bio-active sub-
stance being a promising choice for its regenerative
properties – when activated, it forms a gel-like sub-
stance. Thus, PRP itself may serve as a good bio-scaf-
fold for cell implantation, as well as being an activator
for cell proliferation and differentiation. In the future,
combined use of most suitable seeding cells, best bio-
compatible materials, and active substances to maintain
normal cell phenotype, or directional differentiation,
seem to be promising for IDD regeneration strategies.

Summary and perspectives

During the process of degeneration, the IVD undergoes
multiple cell and molecular changes, including altered
phenotype, cell proliferation, cell density, as well as loss
of ECM. To maintain stability and metabolic balance of
the IVD, multiple cell and molecular factors function
together and compromise changes. Now, the most prom-
ising therapeutic strategies lie in three fields active sub-
stance injection, gene therapy and cell transplantation.
With advanced understanding of cell composition of the
IVD, multiple strategies can be jointly applied for better
regeneration in the near future. However, pathological
mechanisms of IDD still remain unclear. Currently dis-
covered stem/progenitor cells within discs have

advanced our knowledge of cell biology of the IVD and
how these cells might be related to IDD. In the future,
cell mechanisms, and how biological therapies affect
endogenous stem/progenitor cells within discs need to
be further investigated. Further, current studies are
mainly focused on regenerative efficacy of biological
strategies, but possibility of adverse effects need to be
further addressed when applied in clinical use.
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