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Introduction

Mesenchymal stem cells (MScs) (also known as skeletal 
stem cells or bone marrow stromal stem cells) are plastic 
adherent, non-hematopoietic cells that reside in a perivas-
cular niche in the bone marrow stroma, that possess self-
renewal and multi-lineage differentiation capacity (Bianco 
et al. 2001, 2006,  2013). Friedenstein et al. was the first to 
demonstrate that within the stromal fraction of bone mar-
row, there exist stem cells with the ability to create het-
erotopic bone and bone marrow microenvironment upon 
in vivo transplantation in mice (Friedenstein et al. 1966). 
In a subsequent publication, they described “bone marrow 
osteogenic stem cells” as fibroblast colony-forming cells 
that serve as common precursors for bone and cartilage for-
mation (Friedenstein et al. 1987). The widely used name 
of mesenchymal stem cell was coined by caplan et al. to 
describe cells responsible for bone and cartilage forma-
tion, repair and turnover during embryonic development 
and adulthood (caplan 1991). However, the accuracy of 
the term “mesenchymal” has been debated (Bianco et al. 
2013), and alternative names for the same cell population 
have been proposed, e.g., skeletal stem cells (SSc) or stro-
mal stem cells.

Isolation and definition of MSC

Traditionally, MScs have been isolated using plastic 
adherence (Kassem et al. 1993). However, this method 
leads to growth of a heterogenous cell population with a 
mixture of true stem cells as well as their committed pro-
genitors (Kuznetsov et al. 1997). Some recent studies have 
attempted to isolate an MSc population based on spe-
cific criteria (Houlihan et al. 2012; Mabuchi et al. 2013) 
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including surface markers (Tormin et al. 2011). we have 
employed DNA microarrays to define a set of non-canoni-
cal MSc markers predictive for their in vivo bone-forming 
capacity and stemness (larsen et al. 2010).

Mesenchymal stem cells are defined as plastic adherent 
cells, expressing a variety of surface markers, e.g., cD44, 
cD63, cD105, cD146, with the capacity for in vitro dif-
ferentiation into osteoblast, adipocyte and chondrocyte. 
Based on these criteria, isolation of MSc-like cells has 
been reported from different tissues including adipose tis-
sue, umbilical cord, dental pulp, skeletal muscle, synovium, 
periodontal ligament and even brain (Bianco et al. 2001; 
Harkness et al. 2010; Kermani et al. 2008; lian et al. 2010; 
Mahmood et al. 2010, 2012; Orbay et al. 2012; Paul et al. 
2012). However, as shown by our group, these MSc-like 
populations are not identical and exhibit differences in their 
molecular phenotype and differentiation responses (Al-
Nbaheen et al. 2013). currently, only bone marrow-derived 
MScs have documented evidence of stemness including 
the ability to form bone and bone marrow organ upon serial 
transplantation in vivo (Sacchetti et al. 2007), although direct 
demonstration of these “stemness characteristics” of MSc-
like populations, isolated from other tissues, is still needed.

Regulation of MSC differentiation

MSc has a great potential for use in cellular therapeutics tar-
geting skeletal tissue regeneration. A prerequisite for their effi-
cient use in therapy is to identify the molecular mechanisms 
controlling lineage-specific differentiation. MSc lineage spec-
ification is based on activation of lineage-specific transcription 
factors, e.g., Runx2, PPARγ and Sox9 for osteoblastic, adi-
pocytic and chondrocytic lineages, respectively. The expres-
sion and activity of these transcription factors are regulated by 
micro-environmental conditions that include hormonal (e.g., 
PTH, vitamin D3, and estrogen), growth factors (e.g., BMPs, 
TGFβs, IGF), and mechanical forces (cook and Genever 
2013). These micro-environmental factors induce a number of 
intracellular signaling pathways that involve protein kinases 
that on activation mediate the effects of different stimuli on 
transcription factors. In addition, there is an increasing inter-
est in the role of non-coding RNAs (e.g., miRNAs) and epi-
genetic mechanisms in regulating the expression and func-
tion of transcription factors that determine the differentiation 
fate of MSc. Here, we will update on the biology of the main 
transcription factors that regulate differentiation of MScs into 
osteoblasts, adipocytes, and chondrocytes.

Osteoblast differentiation

Runt-related transcription factor-2 (Runx2, also known as 
cbfa1) is the master regulator of osteogenesis which also 

has a role in hypertrophic cartilage formation (Ducy et al. 
1997; Hinoi et al. 2006). During skeletal development, 
expression of Runx2 starts at sites of mesenchymal con-
densation and its expression is detectable throughout dif-
ferent stages of bone formation (Franceschi et al. 2007). 
In addition to transcriptional regulation, the role of Runx2 
is controlled by post-translational modification (such as 
phosphorylation, acetylation) and through interactions with 
other nuclear co-activators and co-repressors (Franceschi 
et al. 2003; Huang et al. 2007; wang et al. 2013; Xiao et al. 
2000). Runx2 has been shown to be necessary and suffi-
cient to commit mesoderm-type cells into the osteogenic 
lineage (Franceschi et al. 2007; Marie 2008). In vivo over-
expression of Runx2 in chondrocytes leads to skeletal mal-
formation, due to ossification of permanent cartilage (Ueta 
et al. 2001). Mouse fetuses with loss of Runx2 function 
lack calcified bones and die at birth, due to respiratory fail-
ure (Franceschi et al. 2007). Haploinsufficiency of Runx2 
in humans leads to the human disease of cleidocranial dys-
plasia characterized by hypoplastic clavicles, open cranial 
fontanels, and decreased bone mass (Huang et al. 2007). 
The Runx2 consensus sequence (PuAccPucA) is present 
in gene promoters of the majority of osteoblastic genes 
such as osteopontin (OPN), bone sialoprotein (BSP), type 
1 collagen alpha 1 chain (col1a1), and osteocalcin (Oc) 
and thus acts as an activator of the osteoblast differentiation 
program (Marie 2008). In addition, Runx2 plays a vital role 
in regulating osteoblast proliferation and survival, through 
regulation of cell cycle and PI3 K-Akt signaling (Fujita 
et al. 2004; Pratap et al. 2003).

expression of Runx2 is regulated by several transcrip-
tion factors, such as beta-catenin (β-catenin), msh home-
obox 2 (Msx2), and distal-less homeobox 5 (Dlx5). (Huang 
et al. 2007). Recently, small heterodimer partner-interact-
ing leucine zipper protein (SMIle), an orphan nuclear 
receptor, has been reported to physically interact with and 
to negatively regulate Runx2 transcriptional activity (Jang 
et al. 2014). The physical interaction between Runx2 and 
the glucocorticoid receptor leads to inhibition of Runx2 
function and impaired osteogenesis which is one of the pos-
sible mechanisms through which prolonged glucocorticoid 
treatment induces decreased bone formation (Koromila 
et al. 2014). eSeT, a histone methyltransferase, has been 
shown to interact with Runx2 and negatively regulate 
its transcriptional activity (lawson et al. 2013); jumonji 
domain-containing 3 (Jmjd3), a histone demethylase which 
specifically catalyzes the removal of trimethylation of his-
tone H3 at lysine 27 (H3K27me3), is necessary for pro-
moter activities of Runx2 and Osterix (Yang et al. 2013); 
and p300/cBP-associated factor (PcAF) directly binds to 
and acetylates Runx2, leading to an increased in its tran-
scriptional activity and enhanced osteogenesis (wang et al. 
2013). Interestingly, Runx2 is target for several miRNAs 
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(miRs). miRNA-15b promotes osteoblast differentiation 
by targeting Smurf1 and protecting Runx2 from Smurf1-
mediated proteasomal degradation (vimalraj et al. 2014). 
loss of function of miRNA-17-92 cluster is associated with 
impaired bone formation and reduced expression of Runx2 
in bones in miR-17-92 +/Δ mice (Zhou et al. 2013). miR-
3077-5p has been shown to be responsible for the reduced 
level of Runx2 protein and therefore reduced osteoblast 
differentiation of MSc isolated from osteoporotic patients 
(liao et al. 2013).

Osterix (Osx) is another major transcription factor that 
regulates osteogenesis. Osx is also known as specificity 
protein 7 (Sp7). It is a zinc-finger osteoblast-specific tran-
scription factor. Osterix induces the promoter activity of 
osteoblast differentiation genes such as Oc, col1a1, OPN, 
and AlP (Huang et al. 2007; Koga et al. 2005). The pres-
ence of the Runx2 responsive element in the Osx promoter 
(Nishio et al. 2006), and normal expression of Runx2 in 
Osx-deficient mice that exhibit severely defective bone for-
mation (Nakashima et al. 2002), indicates that Osx func-
tions downstream of Runx2. expression of chondrocyte 
markers (e.g., Sox9 and col2a1) by osteoprogenitor cells 
of Osx-deficient mice suggests that Runx2-expressing 
osteoprogenitor cells have the potential to differentiate into 
either osteoblasts or chondrocytes and that Osx functions 
downstream of Runx2 to induce the bipotential osteo-chon-
dro-progenitors to differentiate toward the osteoblastic line-
age (Nakashima et al. 2002).

The function of Osterix is modulated by post-transla-
tional modifications such as phosphorylation and ubiq-
uitination (li et al. 2013a; Ortuno et al. 2010; Peng et al. 
2013). Phosphorylation of Osx by erk1/2 and p38 MAP 
kinases, and Akt increase its transcriptional activity (choi 
et al. 2011b, c; Ortuno et al. 2010). In addition, glycogen 
synthase kinase 3 alpha (GSK3α) and calmodulin-depend-
ent kinase II (caMKII) enhance transcriptional activity, 
protein levels, and protein stability of Osx (choi et al. 
2013; li et al. 2013a). In addition, interaction of Osx with 
other transcription factors such as NFTAc, TFII, p300, and 
Brg1 promotes Osx activity (Sinha and Zhou 2013). Simi-
lar to Runx2, miRNAs regulate Osx expression. expression 
of Osx has been shown to be negatively regulated by miR-
93, 125, 135, 138, 143, 145, 214, 322, and 637 (eskildsen 
et al. 2011; Gamez et al. 2013; Goettsch et al. 2011; Jia 
et al. 2013; li et al. 2014; Schaap-Oziemlak et al. 2010; 
Shi et al. 2013; Yang et al. 2012a; Zhang et al. 2011a). 
Moreover, epigenetic regulation of Osx transcription by 
histone demethylases Jmjd3 and NO66 has recently been 
reported (Sinha et al. 2013; Yang et al. 2013). Finally, it has 
been shown that Osx binding sites are present in the pro-
moter region of Osx and auto-regulation is a major mech-
anism by which expression of Osx is controlled (Barbuto 
and Mitchell 2013).

Other osteoblast-associated transcriptional factors

Activator protein-1 (AP-1), β-catenin, activating transcrip-
tion factor 4 (ATF4), and members of Msx/Dlx family are 
transcription factors that have role in regulation of osteo-
blast differentiation and bone formation, but their expres-
sion in not limited to skeletal tissue (cook and Genever 
2013; Marie 2008).

Adipocyte differentiation

Peroxisome proliferator-activated receptor-γ (PPARγ) is 
known as master regulator of adipogenesis. It is a nuclear 
hormone receptor transcriptional factor, which is sufficient 
and indispensable for adipogenic differentiation of MSc 
(Nuttall et al. 2014; Tontonoz et al. 1994). In vitro treat-
ment of MSc with thiazolidinediones (TZD), which are 
ligand agonists of PPARγ, leads to enhanced adipogen-
esis and inhibition of osteoblastogenesis of MSc (Gimble 
et al. 1996). In vivo studies involving chronic exposure of 
rodents to TZDs demonstrated an increase in bone mar-
row fat content and decreased bone mass upon treatment 
with several but not all thiazolidinediones (lazarenko et al. 
2007; Tornvig et al. 2001).

Among the regulators of PPARγ that are relevant to 
MSc biology is the canonical wnt-β-catenin pathway 
which inhibits the mRNA expression of PPARγ. Non-
canonical wnt signaling activates histone methyl-trans-
ferase SeTDB1 that represses PPARγ transactivation 
through methylation of histone H3K9 of the target genes 
(Takada et al. 2009b). TNF-α- or Il-1-induced TAK1/TAB 
1/NIK signaling cascade decreases PPARγ-mediated adi-
pogenesis by inhibiting the binding of PPARγ to the DNA 
response element (Takada et al. 2009a). Nocturnin (NOc), 
which is a nutrient-responsive gene, binds to PPARγ and 
increases its nuclear translocation and transcriptional activ-
ity, thereby enhancing adipogenesis (Kawai et al. 2010). 
Snail, a transcription factor from the zinc-finger family, 
inhibits the transcriptional activity of the PPARγ gene by 
directly binding to the e-box motifs in the PPARγ pro-
moter (lee et al. 2013). Sterol regulatory binding element 
protein-1 (SReBP1) is a transcription factor that regulates 
adipocyte differentiation and cholesterol homeostasis. 
SReBP1 positively regulates the expression of PPARγ 
through interaction with e-box domains in the PPARγ pro-
moter (Fajas et al. 1999). lipin 1, a co-regulator of tran-
scription factors that also has phosphatidate phosphatase 
activity, functions as a key regulator of PPARγ activity 
through its ability to release co-repressors and recruit co-
activators (Kim et al. 2013). Both GATA2 and GATA3 
negatively regulate adipogenesis through direct binding to 
PPARγ (Tong et al. 2000). In addition, a number of miR-
NAs such as miRNA-130b and miR-20a have been shown 



1072 Arch Toxicol (2014) 88:1069–1082

1 3

to negatively regulate adipogenesis by targeting PPARγ 
(Pan et al. 2013; Zhang et al. 2011b).

CAAT/enhancer binding protein-α (C/EBPα) is another 
key transcription factor that is involved in regulation of 
adipogenesis (Samuelsson et al. 1991). Overexpression of 
c/eBPα induces adipogenesis in fibroblasts, and loss of 
c/eBPα function inhibits adipogenesis (Freytag et al. 1994; 
lin and lane 1992). c/eBPs expression is regulated by a 
positive feedback loop that includes PPARγ expression 
(Park et al. 2012). There are c/eBP binding sites within the 
promoter of PPARγ, and expression of PPARγ is thought 
to activate c/eBPα (Park et al. 2012). c/eBP homologous 
proteins (cHOPs) negatively regulate adipogenesis through 
interactions with c/eBPs (Tang and lane 2000). In addi-
tion, the negative regulatory role of GATA2 and 3 on adi-
pogenesis is partly mediated through formation of protein 
complexes with c/eBPα or β (Tong et al. 2005). It has 
recently been demonstrated that post-translational modifi-
cation and epigenetic mechanisms have a role in the regula-
tion of c/eBPα expression and function (Borengasser et al. 
2013; li et al. 2013b; Pal et al. 2013). e6AP, an e3 ubiq-
uitin ligase, inhibits adipogenesis through ubiquitination of 
c/eBPα and targets it to ubiquitin–proteasome pathways 
for degradation (Pal et al. 2013). In addition, increased pro-
pensity for adipogenesis in the male offspring of the over-
feeding-induced obese rats is associated with increased in 
vivo expression of adipogenic regulators such as c/eBPα 
and alterations in DNA methylation of cpG sites and cGI 
shores of developmentally important genes, including key 
pro-adipogenic factors (Borengasser et al. 2013). Moreo-
ver, dexamethasone-induced osteoporosis characterized 
by decreased bone formation and increased marrow fat is 
associated with inhibition of c/eBPα promoter methylation 
leading to enhanced expression of c/eBPα and adipogenic 
differentiation of MSc (li et al. 2013b).

chondrocyte differentiation

SRY-box containing gene 9 (Sox9), a high-mobility-group 
(HMG) box containing transcription factor, is known as 
the master regulator of chondrogenesis. Sox9 activates the 
expression of chondrocyte-specific genes such as col2a1 
and Agc1 and direct concomitant positive and negative 
transcriptional control by SOX9 ensures differentiation 
phase-specific gene expression in chondrocytes (cook and 
Genever 2013; leung et al. 2011; Yamashita et al. 2012). 
Moreover, Sox5 and Sox6 act in redundancy with each 
other to robustly enhance the functions of Sox9 (lefebvre 
et al. 1998). Regulation of chondrogenesis, chondrocyte 
proliferation, and transition to a non-mitotic hypertrophic 
state by Sox9 is required for development of cartilage and 
endochondral bone (leung et al. 2011). Heterozygous 
mutations in SOX9 cause campomelic dysplasia, a severe 

skeletal dysmorphology syndrome in humans characterized 
by a generalized hypoplasia of endochondral bones (Oh 
et al. 2010).

expression and function of Sox9 are regulated through 
recruitment of diverse transcriptional co-activators, histone-
modifying enzymes, subunits of the mediator complex, 
and components of the general transcriptional machin-
ery (e.g., Med12, Med25, and cBP/p300) to the transac-
tivation domain of Sox9 (Akiyama and lefebvre 2011). 
AT-rich interactive domain 5b (Arid5b), a transcriptional 
co-regulator of Sox9, physically interacts with Sox9 and 
synergistically induces chondrogenesis by facilitating the 
Phf2-mediated histone demethylation of Sox9-regulated 
chondrogenic gene promoters (Hata et al. 2013). Suppres-
sion of Sox9 transcriptional activity by Twist1 is the mech-
anism by which canonical wnt signaling inhibits chon-
drogenesis (Gu et al. 2012). Notch signaling negatively 
regulates chondrogenesis by repressing Sox9 transcription 
through recruitment of the Rbpj/NIcD transcription com-
plex to the Rbpj-binding sites upstream of the Sox9 pro-
moter (chen et al. 2013). miR-145 has been shown to be a 
direct regulator of SOX9 in normal healthy human articular 
chondrocytes (Martinez-Sanchez et al. 2012). miR-101 has 
role in Il-1β-induced chondrocyte ecM degradation by 
targeting 3′UTR of Sox9 (Dai et al. 2012).

New source for MSC: generation of MSC‑like cells 
from human pluripotent cells

The use of bone marrow-derived MScs in therapeutic 
applications has been hampered by the limited ability to 
obtain a sufficient number of cells as the cells undergo 
replicative senescence during ex vivo culture expansion 
(Kassem and Marie 2011; Stenderup et al. 2003). Thus, 
alternative sources for generating MSc-like cells with 
increased proliferation potential have been studied. One 
of the most promising cell types are pluripotent stem cells 
(PScs) either from embryonic (eSc) or induced (iPScs) 
sources. These cells have an unlimited proliferation capa-
bility and ability to differentiate into all cells of the body 
including MSc-like cells (Harkness et al. 2011; Tremoleda 
et al. 2008). Differentiation of human PSc toward MSc-
like cells has been performed through a number of differ-
ent methods including recapitulation of gastrulation-like 
stages via embryoid body formation (eB) (Sottile et al. 
2003; Tremoleda et al. 2008); direct addition of morpho-
gens to PSc culture media (Boyd et al. 2009; evseenko 
et al. 2010); co-culture of PSc with osteoprogenitors such 
as OP9 cells (Barberi et al. 2005; de Peppo et al. 2010; 
Inanc et al. 2007); or isolation of cells spontaneously dif-
ferentiated at the edges of feeder-free colonies where an 
epithelial-to-mesenchymal transition (eMT) takes place 
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(Harkness et al. 2011; Olivier and Bouhassira 2011; Trivedi 
and Hematti 2008). The most commonly employed meth-
ods for differentiation are via eB formation combined with 
addition of growth factors during culture (Mahmood et al. 
2010; Schuldiner et al. 2000) or addition of growth factors 
and morphogens directly to PSc monolayer cultures. The 
later method may lack the 3-D structure and microenviron-
ment provided by eB formation (Matsumoto et al. 2011). 
when PScs are induced into MSc-like cells through co-
culture with differentiated osteoblastic cells, the differenti-
ated cells provide selective micro-environmental cues con-
ducive for lineage specification (Fengming Yue et al. 2013).

each of the methods mentioned has been reported in a 
number of publications (see (Abdallah Basem et al. 2011) 
for review). However, during the initial differentiation 
period, most methods (excluding cells undergoing eMT) 
demonstrate a degree of cellular heterogeneity. Repeated 
passaging (de Peppo et al. 2010; Karp et al. 2006), cell sort-
ing (Brown et al. 2009; lian et al. 2007), or selective iso-
lation methods based on adhesion to specific extracellular 
matrix components (Harkness et al. 2011; liu et al. 2012) 
have all been used to achieve a more homogeneous popula-
tions with MSc characteristics (Harkness et al. 2011). Nev-
ertheless, the functional ability for these cells to regenerate 
bone and cartilage (in preclinical animal models) needs to 
be fully determined.

From basic biology to clinical applications

Stromal stem cells therapy

cellular therapy is an emerging field in clinical medi-
cine aimed at using cells (and in particular stem cells) for 

treatment of chronic and degenerative diseases. As can be 
seen in Table 1, several cell types have been suggested in 
clinical applications based on their phenotype and function-
ality. Bone marrow-derived MScs are among the most suit-
able candidates for cellular therapeutics because of their ease 
of isolation, differentiation potential into skeletal tissues, and 
their excellent safety record (lepperdinger et al. 2008) as 
well as their immunomodulatory and regeneration promoting 
properties (Nauta and Fibbe 2007; Zhao et al. 2010). MScs 
have been employed in an increasing number of clinical 
studies for enhancing tissue regeneration following injury of 
both skeletal damage, e.g., bone (Gangji and Hauzeur 2005; 
le Blanc et al. 2005), cartilage (wakitani et al. 2007), and 
non-skeletal diseases, e.g., type I diabetes mellitus (Bhansali 
et al. 2009; estrada et al. 2008), crohn’s diseases (Dui-
jvestein et al. 2010; liang et al. 2012), and following myo-
cardial infarction (chen et al. 2004; Hare et al. 2009).

The clinical use of MSc in therapy has employed both 
local and systemic injections. Systemic infusion of MSc 
for tissue repair is a clinically attractive approach and is 
similar to route used for hematopoietic stem cell transplan-
tation. However, the mechanisms that govern migration of 
MScs to injured tissues are still poorly understood (Karp 
and leng Teo 2009). A limited degree of MSc homing to 
damaged tissues has been described in many preclinical 
studies using animal models of brain injury (Ji et al. 2004), 
skeletal disorders (Devine et al. 2001; Shi et al. 2007), 
and acute radiation syndrome (lange et al. 2011; Yang 
et al. 2012b). Although human MScs do express several 
chemokine receptors and adhesion molecules (Sordi et al. 
2005; wu and Zhao 2012) known to mediate homing of 
leukocytes to inflamed tissues (Mohle et al. 1998; Quesen-
berry and Becker 1998), their precise role in MScs homing 
is still under investigation.

Table 1  cell sources of osteogenic cells used in cellular therapeutics

embryonic stem cells Induced pluripotent cells Osteoblastic cells Stromal stem cells

Potency Pluripotent cells Pluripotent cells committed cells Multipotent cells

Source Blastocyst inner cell mass Somatic cells by genetic modi-
fication using a number of 
methodologies

Biopsies taken from bone tissue From almost all adult tissues, 
including bone marrow 
aspirates

Advantages Pluripotent ability to differenti-
ate to any cell type

Ability to expand cultures 
indefinitely

Patient specific
Pluripotent ability to differenti-

ate to any cell type
Ability to expand cultures 

indefinitely

Differentiated cells with no 
need to ex vivo differentiation

ease of isolation
Ability to modulate immune 

responses
Secretion of useful factors that 

enhance regeneration
Stimulation of resident cells
ease of genetic modification

Disadvantages Teratoma formation
ethical concerns

Safety concerns about the 
method by which iPScs are 
generated

Teratoma formation

limited to bone regeneration
Present in very limited numbers 

in the bone tissue
Osteoblast proliferation is slow 

and expansion is difficult

Present in low numbers in bone 
tissue

limited capability of differen-
tiation
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Due to the limited homing capacity of MSc to injured 
tissues, the positive initial clinical effects of MSc therapy 
are thought to be due to “humoral” factors secreted by 
MSc that enhance tissue regeneration. MScs are known to 
secrete a plethora of autocrine and paracrine chemokines 
and growth factors (TGFB, TSG6, PGe2) that stimu-
late endogenous/resident cells, exhibit anti-apoptotic and 
immuno-modulatory effects as well as enhance vasculo-
genesis (Gnecchi et al. 2008; Mirotsou et al. 2011). while 
it was reported that systemically injected MSc may get 
entrapped in the lungs (Bentzon et al. 2005; Schrepfer et al. 
2007), their paracrine effects ensure that MScs still exer-
cise a positive influence through secretion of factors that 
exert favorable actions on distant, damaged tissues (choi 
et al. 2011a). currently, more than 3,800 stem cell-based 
clinical trials are registered worldwide with the NIH (USA) 
clinical trials database (USA 62.4 %, europe 20.15 %, 
china 7.5 %, canada 4.3 %) (Database UNIoHNctrar In. 
2014), and the initial results of many Phase I or Phase I-II 
trials are encouraging.

examples of the use of MSc in clinical therapy

Skeletal tissue regeneration

Regeneration of bone tissue is needed in a growing number 
of skeletal diseases, e.g., local non-union bone defects fol-
lowing tumor removal or complicated fractures. Transplan-
tation of stem cells that are capable of bone generation in 
vivo is therefore an attractive and alternative approach to 
bone autograft or allograft techniques.

The efficacy of use of BM MSc for repair of bone 
defects or complicated fractures has been tested in animal 
models and in some phase I/II clinical trials. Bone marrow 
MScs over-expressing veGF and BMP2 were systemi-
cally administered in mice with surgically induced tibial 
bone defects. In mice injected with overexpressing cells, 
enhanced bone formation was observed and was associated 
with enhanced tissue vascularity at fracture site when com-
pared with controls (Kumar et al. 2010). Similarly, murine 
bone marrow-derived MScs overexpressing Osx were 
implanted in mice calvarial critical size bone defects and 
resulted in efficient healing (Tu et al. 2007).

In the past decade, clinical studies have employed a vari-
ety of cell types, most commonly bone marrow-derived 
mononuclear cells (MNc) that contain MSc in addition to 
other hematopoietic cells. Hernigou et al. (2005) have dem-
onstrated that injection of an autologous bone marrow aspi-
rate-derived MNc into the site of bone non-union fractures 
in 60 patients did result in bone union in the 53 (88.3 %) of 
treated individuals. In the seven patients that exhibited fail-
ure of bone union, a low cFU-F (fibroblastic colony-forming 
unit) count was observed (which a surrogate measure of the 

number of MSc in the injected cells), suggesting a role of 
MSc and progenitor cell numbers in determining the out-
come of cell therapy (Hernigou et al. 2005). In a small case 
series, autologous bone marrow MScs were extracted and 
cultured in platelet rich plasma (PRP) followed by transplan-
tation to sites of bone defects in individuals with achondro-
plasia or limb hypoplasia undergoing distraction osteogene-
sis for limb lengthening. Healing was observed in the treated 
patients with new bone formation during femoral lengthen-
ing as a consequence of the cell transplant in these patients 
(Kitoh et al. 2004). Also, promising preliminary results for 
treatment of femoral head osteonecrosis have been reported 
(Gangji and Hauzeur 2005; Kawate et al. 2006).

Osteoarthritis is common degenerative joint disease and 
among the most frequent causes of joint pain and disabil-
ity. In a recent pilot study, twelve osteoarthritic patients 
with chronic knee pain were treated with autologous bone 
marrow MScs. culture expanded MScs (40 × 106 cells) 
were locally administrated by intra-articular injection after 
which patients exhibited rapid and progressive improve-
ment of functional recovery of the joint function with 
improvement of cartilage quality in most of the patients 
(Orozco et al. 2013). In another study, the effects of local 
injection with either autologous BM MSc or cultured 
chondrocytes on disease progression were evaluated in 72 
patients suffering from osteoarthritis (OA). Patients in both 
groups showed significant improvement in “quality of life,” 
but no differences could be observed between both groups 
(Nejadnik et al. 2010).

Myocardial regeneration

The myocardium has a limited capacity for regeneration, 
thus, following myocardial infarction; myocardial repair 
is carried out by formation of scar tissue that has negative 
effects on the myocardial contractility and function. cardi-
ovascular diseases caused by such impairment of myocar-
dium functions leading to hear failure are among the major 
causes of mortality worldwide (Fuster et al. 2011). MScs 
have been tested for their ability to enhance myocardial 
regeneration following acute myocardial infarction (AMI) 
or chronic ischemic heart failure (cHF). Results from stud-
ies where undifferentiated MScs were injected with aim 
of regenerating the myocardium have demonstrated that 
engraftment and/or differentiation of the injected cells into 
newly generated cardiomyocytes is very limited or non-
existent despite observed beneficial effects (Noiseux et al. 
2006; Perez-Ilzarbe et al. 2008). Thus, it is considered 
that the beneficial effects of MSc in cardiac regeneration 
are mediated by “humoral” factors secreted by MSc that 
enhance tissue regeneration (Mirotsou et al. 2011) or stim-
ulate and activate resident cardiac stem cells (cScs) (Hatz-
istergos et al. 2010).
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Modification of MSc to enhance production of 
cytokines or growth factors, known to enhance myocar-
dial regeneration, has also been tested. For example, rat 
MScs overexpressing IGF 1 were locally injected in a rat 
model of acute myocardial infarction. The injected cells led 
to increased local production of stromal derived factor-1 
(SDF-1), reduction in infarct size, and increased ejection 
fraction (Haider et al. 2008). chemokine receptor type 1 
(ccR1), a member of the chemokine family, was overex-
pressed in mouse bone marrow MSc and injected locally 
in a mouse model of acute myocardial infarction and led 
to reduced apoptosis, increased vascularity, restoration of 
cardiac function, and reduction in the infarct size (Huang 
et al. 2010). In order to enhance survival of transplanted 
stem cells in the myocardium, overexpression of survival-
enhancing factors, e.g., veGF (Tao et al. 2011) and Akt 
(Shiojima and walsh 2006), was tried and resulted in 
improved survival of injected rat MSc within the tissue. 
when transplanted in a rat model of AMI, a significant 
reduction in infarct size and improved left ventricular func-
tion were observed (Mangi et al. 2003; Shujia et al. 2008). 
In another study, rat MScs overexpressing survival protein 
B cell lymphoma 2 (Bcl-2) were injected locally (intra-
cardiac) into a rat model of AMI. The genetically modified 
cells exhibited long-term survival at the infarction site and 
resulted in 17 % reduction in infarct size (li et al. 2007).

In the past decade, many clinical trials utilizing a number 
of bone marrow-derived cell preparations (including bone 
marrow-derived MNc) have been conducted (reviewed in 
(Jeevanantham et al. 2012; Zimmet et al. 2012). A non-ran-
domized study evaluating the effects of repeated intracoro-
nary BMSc infusions in 32 patients with cHF (lv ejection 
fraction less than 40 %) demonstrated encouraging results. 
These patients received BMSc infusion at baseline and 
after four months. Follow-up consisted of serial echocar-
diograms (four, eight, and twelve months) after the first 
intervention, measurements of the ratio of transmitral flow 
(e) velocity to early mitral annulus (e’) velocity (e/e’), left 
atrial (lA) volume, and plasma levels of N-terminal pro-
brain natriuretic peptide (NT-pro-BNP). During the initial 
treatment phase, there were no changes in main outcome 
but after treatment with intracoronary BMSc, a signifi-
cant decrease was observed in e/e’ ratio, lA volume, and 
plasma NT-pro-BNP. The effect was greatest in patients 
who received the largest amount of cD34 (+) cells (Died-
erichsen et al. 2010). A placebo-controlled clinical study of 
intra-coronary injection of autologous MSc within twelve 
hours after the onset of acute myocardial infarction was 
conducted in 69 patients. No side effects or toxicity were 
reported during the six month follow-up. Positive effects 
of increased left ventricular ejection fraction and left ven-
tricular end diastolic volume that improve contractility and 
enhance infarct viability were reported (chen et al. 2004). 

Hera et al. (2009) performed a double-blind, placebo-con-
trolled, dose-ranging (0.5, 1.6 or 5 × 106 cells\kg) safety 
trial of intravenous allogeneic MSc’s in 53 patients with 
anterior myocardial infarction. Global symptom score and 
ejection fraction (an estimated of left ventricular func-
tion) were significantly improved in MSc-treated group 
compared with controls. In another study, 33 patients with 
dilated cardiomyopathy underwent intracoronary infu-
sion of BMc using balloon catheter. After 3 months of cell 
administration, regional wall motion of the affected myo-
cardium and global left ventricular ejection fraction were 
improved. The authors reported that the increase in regional 
contractile function was directly related to the functional-
ity of the infused cells as measured by their colony-forming 
capacity (Fischer-Rasokat et al. 2009).

Graft versus host disease

Graft versus host disease (GvhD) is a potentially fatal dis-
ease that develops as a consequence of allogenic hemat-
opoietic stem cell transplantation. Human bone marrow 
derived and adipose tissue-derived MScs (Fang et al. 
2007) were tried out for treatment of GvhD with suc-
cess based on their immunoregulatory characteristics 
as mentioned above. In a recent study, nineteen patients 
suffering from chronic GvHD were treated with MScs 
(0.6 × 106  cells/kg). Fourteen (74 %) of these patients 
demonstrated partial or complete responses and five 
patients (25 %) discontinued immunosuppressive agents 
(weng et al. 2010). The 2-year survival rate was 77.7 % in 
this study. clinical improvement was accompanied by the 
increasing ratio of cD5+cD19+/cD5−cD19+ B cells 
and cD8+cD28−/cD8+cD28+ T cells. No patients 
reported side effects from the MSc therapy (weng et al. 
2010). The beneficial effects of MSc were also observed 
in a phase II clinical trial of 55 children and adult patients 
with acute severe and steroid resistant GvhD. Intrave-
nous infusion of autologous MSc was safe and resulted 
in higher survival rates in patients with complete response 
and significantly lower transplantation-related mortality 
(le et al. 2008). In another study, MSc was employed to 
treat nine patients (eight patients with steroid refractory 
acute GvHD and one patient with chronic GvHD). MScs 
obtained from either identical siblings, haploidentical 
donors, and HlA-mismatched donors were systematically 
injected and caused clinical recovery in six out of the eight 
patients (Ringden et al. 2006). In a recent randomized clin-
ical trial of 32 patients with grade II-Iv GvhD that either 
received intravenous autologous MSc (2 or 8 × 106  cells/
kg) or standard therapy, 77 % of patients that received 
MSc transplantation exhibited complete response and no 
MSc infusion-related toxicities were observed (Kebriaei 
et al. 2009).
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MSC as therapeutic vehicle

The ability and ease of genetic modification of MScs have 
encouraged their use as a vehicle for gene transfer and/
or secretion of ectopic proteins. Potential transplantation 
of modified MSc as vehicles for secretion of therapeutic 
factors has been suggested in a number of studies (Porada 
and Almeida-Porada 2010; Sarkar et al. 2010). In a recent 
study, mRNA transfection was utilized to generate MScs 
that simultaneously expressed P-selectin glycoprotein 
ligand-1 (PSGl-1), Sialyl-lewisx (SleX)) and secreted 
interleukin-10 (Il-10). Using membrane dyes, these cells 
were tracked in vivo following systemic injection, and 
a rapid homing of MScs to the site of inflammation was 
observed with a higher anti-inflammatory effect which sig-
nificantly decreased local inflammation (levy et al. 2013).

Heile et al. (2009) tested the efficacy of human bone 
marrow-derived MSc transduced with the human tel-
omerase reverse transcriptase gene (hTeRT) (hMSc-
TeRT) (Simonsen et al. 2002) overexpressing GlP-1 
(glucaogon-like peptide 1), a protein known to enhance 
neuronal tissue regeneration, in a rat brain injury 
model. By assessment of MAP-2 and GFAP expression, 
implanted hMSc-TeRT-GlP1 cells resulted in reduc-
tion in hippocampal cell loss as well as reduction in cor-
tical and glial defects (Heile et al. 2009; Klinge et al. 
2011). Based on these promising results, a phase I trial 
in patients with cerebral hemorrhage that required surgery 
was initiated where encapsulated GlP-1-overexpressing 
hMSc-TeRT cells were transplanted within a retriev-
able mesh device (described as “tea-bag” approach) into 
the brain following removal of bleeding. Following a 
treatment period of 14 days, the “tea-bag” was removed 
(http://www.biocompatibles.com/media/press-releases/
first-ever-treatment-of-stroke-patient-with-stem-cell-ther-
apy-product). The feasibility and safety of this approach 
have been documented in this trial, and thus, the efficacy 
of treatment needs to be determined.

Concerns regarding use of stem cells in therapy

The safety record of human MSc is excellent, and during 
ex vivo culture expansion, the cells exhibit a stable pheno-
type with no risk of spontaneous transformation (Stenderup 
et al. 2003; wang et al. 2012). while PScs are an attractive 
source for generating a large number of phenotypically sta-
ble cells suitable for therapy, there are a number of safety 
aspects relating to the use of human PSc and their deriva-
tives in clinical applications that also apply to MSc. One 
of these is immune rejection. while autologous transplanta-
tion from MSc remains the safest method, allogeneic MSc 

transplantation is also possible since MSc exhibit immune 
suppressive properties (De Miguel et al. 2012; le Blanc 
and Ringden 2007). The recent development of patient spe-
cific iPSc allows the generation of cells compatible with 
the donor; and thus, generation and expansion prior to 
transplantation become less of an issue.

Another important concern is the risk for malignant 
transformation of the transplanted stem cells. As mentioned 
above, MScs do not transform during in vitro culture and 
no history of development of cancer has been reported fol-
lowing administration of MSc in patients. conversely, 
PScs have a propensity for forming tumors when implanted 
as undifferentiated cells in vivo and thus the contamination 
of differentiated PSc with undifferentiated cells may pose 
a risk (Miura et al. 2009). However, it is currently unknown 
how many (or few) undifferentiated PSc would be accept-
able within cells for clinical transplantation. Hentze et al. 
(2009) reported a detection limit of 1:4,000 for tumor for-
mation when injecting single cells into immune compro-
mised mice. However, the current ability to form tumors in 
vivo depends more on the strain of mice used (degree of 
immunocompromisation) (Quintana et al. 2008) than other 
factors such as site of injection (cunningham et al. 2012), 
and thus, this method may not be predictive for the behav-
ior of the transplanted cells in vivo.

Development of assays that screen stem cells for their 
safety prior to their transplantation is being developed. 
Demonstration of genetic alterations in cultured cell sug-
gests a malignant transformation potential (Bentivegna 
et al. 2013; Nouspikel 2013). Two routine procedures have 
been utilized to assess chromosomal and genetic abnormal-
ities: karyotyping and identification of gross morphological 
changes (such as acquisition, deletion, or inversions) using 
G-banded karyotyping or the creation of a virtual karyo-
type using single nucleotide polymorphism (SNP) or com-
parative genomic hybridization (cGH), (Hagenkord et al. 
2008). we have recently demonstrated the possible use of 
noninvasive Raman spectroscopy (Harkness et al. 2012) as 
a method for detecting transformed cells among cultured 
cells.

Several techniques have been proposed to eliminate 
undifferentiated PSc prior to transplantation. These include 
selective apoptosis of PSc (Bieberich et al. 2004), removal 
of PSc through flow cytometry (Schriebl et al. 2012) or 
through mechanical removal (Tang et al. 2012). It would be 
more efficient if the differentiation protocols utilized were 
robust enough to induce a homogeneous cell type without 
pluripotent cells remaining.
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