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Abstract

Background Disc cell therapies, in which cells are

injected into the degenerate disc in order to regenerate the

matrix and restore function, appear to be an attractive,

minimally invasive method of treatment. Interest in this

area has stimulated research into disc cell biology in par-

ticular. However, other important issues, some of which are

discussed here, need to be considered if cell-based thera-

pies are to be brought to the clinic.

Purpose Firstly, a question which is barely addressed in

the literature, is how to identify patients with ‘degenerative

disc disease’ who would benefit from cell therapy. Pain not

disc degeneration is the symptom which drives patients to

the clinic. Even though there are associations between back

pain and disc degeneration, many people with even

severely degenerate discs, with herniated discs or with

spinal stenosis, are pain-free. It is not possible using cur-

rently available techniques to identify whether disc repair

or regeneration would remove symptoms or prevent

symptoms from occurring in future. Moreover, the repair

process in human discs is very slow (years) because of the

low cell density which can be supported nutritionally even

in healthy human discs. If repair is necessary for relief of

symptoms, questions regarding quality of life and reha-

bilitation during this long process need consideration.

Also, some serious technical issues remain. Finding

appropriate cell sources and scaffolds have received most

attention, but these are not the only issues determining the

feasibility of the procedure. There are questions regarding

the safety of implanting cells by injection through the

annulus whether the nutrient supply to the disc is sufficient

to support implanted cells and whether, if cells are able to

survive, conditions in a degenerate human disc will allow

them to repair the damaged tissue.

Conclusions If cell therapy for treatment of disc-related

disorders is to enter the clinic as a routine treatment,

investigations must examine the questions related to patient

selection and the feasibility of achieving the desired repair

in an acceptable time frame. Few diagnostic tests that

examine whether cell therapies are likely to succeed are

available at present, but definite exclusion criteria would be

evidence of major disc fissures, or disturbance of nutrient

pathways as measured by post-contrast MRI.

Keywords Disc nutrition � Post-contrast MRI � Cell

death � Rehabilitation

Introduction

Autologous chondrocyte implantation for repairing articu-

lar cartilage defects has been used in the clinic since 1994

[1]. Here, autologous chondrocytes are implanted into a
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defect where they produce cartilage matrix and repair the

injured cartilage [2]. Following on from the success of

cartilage repair, the idea of treating the degenerate disc by a

relatively non-invasive injection of autologous cells [3] has

captured the imagination of researchers and provided a

tremendous stimulus for research into disc biology. For

example, the number of papers published on intervertebral

disc cells has increased exponentially from fewer than 250

papers in total before 1995 to over 2000 currently (PubMed

search). From not knowing whether cells in different

regions of the disc were phenotypically distinct or not even

15 years ago [4, 5], the different cell phenotypes populat-

ing the nucleus, cartilaginous endplate and annulus have

been identified (reviewed [6]), differentiation pathways and

progenitors identified [7–9] and specific markers differen-

tiating cells of the nucleus from those of the annulus pro-

posed [10–12]. Methods of culture have advanced from

simple three-dimensional culture of primary cells in serum

in alginate beads [13] to sophisticated matrices designed to

promote differentiation of stem cells towards annulus or

nucleus cell phenotypes [14–16]. Other areas of disc biol-

ogy have also benefited from the interest in repair;

knowledge of areas such as annulus structure and cell

phenotype [17, 18], of disc-endplate organisation [19, 20],

and of the intradiscal environment of degenerate discs

(reviewed [21]) has increased substantially over the past

decade.

However, in regard to disc repair, though much more is

now known of disc tissue and of some of the technical

challenges identified even 5 years ago [22, 23] such as

identifying disc cell sources appropriate for disc tissue

engineering [24–27] and of scaffolds for implanting and

supporting such cells [28–32], other issues which have

impact on clinical viability of disc repair tissue, such as

long turnover times in human discs and nutritional

impediments, have been comparatively neglected. Even

though clinical implantation of cells into the human disc

has been used on a limited number of patients [33–37] and

a number of clinical trials are in progress, questions

regarding the clinical aims and clinical feasibility of cell

therapies for the disc are barely discussed.

Some of the issues which we believe require attention

are summarised (Fig. 1). If cell therapy is to become a

routine clinical treatment, research into cell therapy for

treatment of disc-related disorders must go beyond

research into cells and scaffolds and examine questions

related to cell therapy practice. These questions are both

technical, such as how to implant cells safely into the disc,

and how to identify when conditions in a patient’s disc are

permissive for successful survival and activity of disc cells,

but also relate to the important issue of whether a patient’s

symptoms might benefit from cell therapies. Here we dis-

cuss some of these clinical and technical issues relating to

biological therapies for disc repair, concentrating on

approaches which seek to repair the disc by implanting

cells, but some of the issues raised are also relevant to

developing methods that would repair the disc by protein

injection or gene therapy.

Which patients will benefit from cell therapies?

The basic assumption, explicitly stated in most studies on

disc repair, is that disc degeneration leads to low back pain

which is an enormous clinical problem, and regenerating or

repairing the disc will provide symptomatic relief [26, 38,

39]. Disc degeneration itself is, however, universal and in

many cases non-symptomatic [40, 41] and there is no

means at present of identifying whether anyone with a

degenerate disc is likely to develop symptoms [42, 43].

As far as back pain patients are concerned, low back

pain and degenerative disc disease are widely used terms,

but are not specific; degenerative disc disease, for example,

has been used to refer to patients with disc degeneration

and non-specific pain, with herniated discs with radicu-

lopathy, with lumbar spinal stenosis and with degenerative

spondylolisthesis (reviewed [44]). These patients in general

have degenerative or pathological changes to the disc

which can be seen on MRI. And while there are studies

which indicate that patients with severe disc degeneration

are more likely to suffer from back pain [45, 46], it is not

evident that the disc is the source of symptoms as severely

degenerate discs with pathological features such as disc

herniations, annular tears, Modic changes and severe

lumbar spinal stenosis are also present in a significant

fraction of the symptom-free population [40, 47–50].

There is also no direct evidence that the process of

degeneration is responsible for symptoms [42, 51]; the idea

that the pain can arise from the disc itself is controversial

[52, 53]. Moreover it is not clear whether, in a significant

1. Is disc degeneration the cause of symptoms? 
a. Will repair of the disc remove symptoms or prevent progression 

leading to symptoms? 
b.  Is an appropriate rehabilitation scheme in place for the long 

repair process”  
2. Is an adequate cell implantation procedure available? 

a. Can the cells be introduced into the disc without causing 
damage? 

b. Can the cells be retained in the desired area of the disc? 
c. Can the cells remain in the disc without being expelled? 

3. Is nutrient supply sufficient to maintain viability of any 
implanted cells? 

4.  Can the implanted cells produce an appropriate load-
bearing matrix? 

a. Will the implanted cells find conditions in the disc 
appropriate for production of matrix and tissue repair?

Fig. 1 Neglected issues. Some technical and clinical issues which are

poorly researched and discussed and yet are important for the clinical

success of disc cell therapies
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proportion of patients, regenerating or repairing the disc

will provide any relief of pain, the symptom which drives

most back pain patients to seek clinical help. Indeed, in

many cases, by the time the patient gets to the clinic,

epidemiological studies find that 20–35 % of back pain

patients suffer from neuropathic pain (reviewed [54]).

There is also evidence for augmented pain transmission

(central sensitisation) and referred pain in a significant

proportion of chronic back pain patients [55]. Thus, for

these patients, the Cartesian view of pain, i.e., that a

pathological change leads directly to pain and that removal

of the pathology will remove the pain, no longer holds [56].

Is disc repair the appropriate treatment for such patients?

Cell therapy has been used on patients to prevent loss of

disc height after herniation and to prevent recurrent her-

niation [34, 57]; interim results found that disc height was

not regained after 2 years in comparison with untreated

patients though water content was higher [34, 57]. In

addition, cell therapies have been used in small pilot

studies to alleviate back pain by injecting chondrocytes or

stem cells into the disc; in some studies, but not all,

patients report some pain benefit and in one case loss of

high intensity zones on imaging [33, 35–37, 58]. However,

none of these pilot studies have controls. It should be noted

that needle injection alone may give pain relief, possibly

through a placebo effect, even in cases of chronic back pain

[59], so effectiveness of cell-based therapies can only be

assessed by well-designed clinical trials. Eight Phase 1 or

Phase II clinical trials on use of cell therapies for treatment

of chronic low back pain or of herniated discs are now

listed in http://clinicaltrials.gov/ but no outcomes are yet

available.

Biological repair of human discs: a slow process

Because of its size and avascular nature, the human disc

can only support a small number of viable cells; the cell

density of the adult nucleus pulposus (NP) is reported to be

around 1–5 million cells/ml [60, 61], i.e., \0.5 % tissue

volume. Biological repair of human discs would be

expected to be slow. Repair in animal models of disc

degeneration may thus in general provide an over-opti-

mistic view of success in the human lumbar disc [62], as,

apart from other issues concerning the relevance of many

of the acute models of degeneration, discs of even large

animals, such as pigs, dogs or sheep, are very much smaller

than human lumbar discs and support a very much greater

cell density [63, 64]. Restoration of disc height has been

reported to occur relatively fast in small animals after

acutely induced disc degeneration—within 6 weeks in rats

[65] and 18 weeks in rabbits [66]. Studies on discs of larger

animals such as dogs, pigs and sheep, which are still

considerably smaller than human discs [64, 67] have found

that even in young healthy animals with degenera-

tion induced acutely, disc properties were not effectively

restored to control values by 3, 6 or even 12 months

[24, 68–71].

Repair in human discs, including restoration of disc

height, is unlikely to be faster and could be considerably

slower than seen in animals—the half life of aggrecan in

human discs is 3–6 years and is many decades for fibrillar

proteins such as collagen and elastin (reviewed [72])

reflecting the low rate of matrix synthesis and degradation

in this tissue. Appropriate clinical rehabilitation regimes,

which allow healing without overloading the repair tissue

or other structures, have been developed for human knee

cartilage [73, 74] This cartilage is much thinner (2–3 mm)

and more cellular than the lumbar discs (around 10 million

cells/ml [75]), but has still not regained its mechanical

properties 12 months after cellular implantation and

3 years is required for the repair tissue to mature [76, 77].

Healing would be considerably slower in the disc which is

less cellular and considerably thicker; until it regains

stiffness and height, its biomechanical behaviour will not

return to normal and other structures such as facet joints

will continue to experience inappropriate loads [78]. As far

as we can determine the problems arising because of slow

healing have not been discussed in relation to cellular

repair of discs nor have any rehabilitation regimes been

considered in the 8 clinical trials on cell therapy approa-

ches for treating back pain now under way.

Can cells be safely implanted into the disc?

One advantage put forward for using cell therapies is that

they are relatively non-invasive, as cells can be implanted

directly into the degraded nucleus by injection. There are,

however, factors which need to be considered regarding

this technique.

Firstly, after a recent 10-year follow-up study, Carragee

et al. [79, 80] reported that, in patients who had undergone

discography, painful disc degeneration was accelerated

significantly compared to matched controls who had not

undergone discography. The discography cohort underwent

four times as many lumbar surgeries as the control group

over this period. The cause of the damage is not known; it

could arise from the contrast medium (CM) used, from

needle damage or from pressure damage arising from fluid

injection into the disc. While high injection pressures could

injure the disc, this has not been discussed directly; only a

small volume of fluid can be injected into a normal disc

[81] with fluid volume increasing and required injection

pressure decreasing as the degree of degeneration increa-

ses. Contrast medium could have adverse effects on cell
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viability as seen in vitro cell culture tests [82, 83]; how-

ever, cells in these tests have been exposed to culture

medium for considerably longer durations and higher

concentrations than would result from discography in vivo.

Of the three proposed modes of damage arising from dis-

cography, needle puncture damage of the annulus has been

most studied. There are some indications from animal

studies that use of very fine needles can obviate damage to

the annulus [84, 85]. However, other studies report that

needle puncture with a 25G or 26G into the relatively large

bovine disc can cause damage to the annulus fibres,

changes in disc biomechanical responses and leads to

degenerative changes [86, 87]. Until the causes of dis-

cography-induced disc damage are identified, implanting

cells into the disc via injection through the annulus is

potentially risky and risk-benefits have to be considered

[88]; therapeutic injection of cells, or indeed any other

agent, into the disc for the purpose of reversing the process

of disc degeneration could instead actually accelerate it.

Some studies are now investigating alternative routes into

the disc via the endplate [89], but endplate damage itself

can induce disc degeneration [90]. Whether this route is

viable in the long term has not yet been proven.

The second issue is whether the implanted cells can be

retained in the desired region of the disc. The view of a

degenerate nucleus enclosed by an intact annulus which

can thus contain any implanted cells does not apply to

most adult human discs. Many discs, even at a young age

(under 20 years), have small cracks and even major fissures

that may not be visible by routine MRI [91–94]. Anterior or

posterior radial tears on histological examination, some

extending to the disc margins, were found in 47–68 % of

young (10–30 years) L4–5 discs, the proportion of discs

with such tears increased with age [93]. Virtually all discs

examined had concentric treats and many other lesions

were reported. There is, thus, a danger that cell suspensions

injected into the disc nucleus could be forced into the

annulus once the disc is loaded, or indeed out of the disc

itself, as seen also in nuclear implants where the annulus is

breached [95]. Leakage of cells is potentially harmful, has

occurred in animal experiments [96] and could lead to

inappropriate osteophyte formation [97]. An intact annulus

thus seems a requirement for nucleus cell therapy [98]

unless some kind of method of finding and sealing annulus

cracks is developed. The requirement of repairing the

annulus as well as the nucleus is now becoming recognised

[17, 18, 99–102]; however, the necessity for annulus repair

moves disc cell therapies away from a simple minimally

invasive procedure.

Thus, understanding how to implant cells into the disc

safely and maintain them in the required region are areas in

urgent need of further study if simple relatively non-invasive

disc cell therapies are to be introduced routinely to the clinic.

Limitations arising from the nutrient supply

A fall in nutrient supply in degenerate discs is one of the

main impediments to the success of any form of cell

therapy. If the original cells failed to function appropri-

ately, or died because of lack of nutrient supply, the

implanted cells will suffer the same fate.

Disc cells, like all others in the body, must have an

adequate nutrient supply to survive and function

(reviewed [103]); they consume glucose and oxygen and

produce metabolic products, particularly lactic acid which

acidifies the matrix and must be removed from the tissue

to maintain cell viability [104]. The disc is large and

avascular. Nutrients are supplied to the cells of the

nucleus and inner annulus by capillaries which arise in

the vertebral bodies and penetrate the subchondral plate

through marrow spaces, terminating in loops at the

junction of the subchondral plate and cartilaginous end-

plate [100]. Nutrients then diffuse through the disc, under

concentration gradients governed by the balance between

the rate of transport and the rate of cellular demand.

Concentrations of glucose and oxygen, which are con-

sumed by the cells, fall with distance from the blood

supply and reach low levels in the disc centre while lactic

acid concentrations follow a reverse concentration profile

[105]. If glucose concentrations fall below 0.2 mM or pH

levels fall below pH 6.8, cell survival and activity are

compromised [104]. These levels can be disturbed by a

fall in the rate of transport. The nutritional pathway from

the blood supply to the disc cells is disturbed in degen-

erate discs through changes such as calcification of the

cartilaginous endplate which inhibits diffusion of solutes

into the disc [106–108], loss of marrow contacts with the

cartilage endplate [109] and atherosclerosis of the verte-

bral arteries [110]. Disturbances of the nutrient pathway

into the discs have long been associated with disc

degeneration [109, 111].

Recent developments in MRI have now been able to

show this association in vivo. Sequential MR images of the

lumbar spine following intravenous injection of a CM are

able to follow diffusion of the CM into the disc [112–115].

Post injection, the CM reaches the subchondral plate within

5 min after injection and diffuses into the disc, but is only

seen in the central part of the lumbar disc at around 4 h

post injection while enhancement peaks in the central part

of the (NP) only 6–7 h post injection [114, 116]. In some,

but not all studies, peak enhancement is considerably

delayed and diminished in intensity in mild or moderately

degenerate discs [115, 117] with most hold-up seen in the

endplate region. Enhancement into very degenerate discs is

rapid, possibly because of endplate breach and vascular

ingrowth [114, 115, 117] following from proteoglycan loss

[118–120].
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This post-contrast method of monitoring transport does

not provide direct information on nutrient levels as the

transport of CM into the disc is purely diffusive while the

gradients of nutrients such as oxygen or glucose are gov-

erned by both diffusive transport of these species into the

disc and by cellular activity [103]. Therefore, at the

moment it is not possible to draw direct conclusions on

nutrient levels necessary for cell activity and survival from

this methodology. It should be noted that direct measure-

ments of nutrient levels in discs of patients show very

varied levels [121], pointing to the complexity of the

relationship between the changes in transport in degener-

ation and cellular activity; such interactions will compli-

cate any assessments. Measurement of both nutrient

pathways and viable cell density in a disc would allow

assessment of whether nutrient supply is adequate to sup-

port the survival of newly implanted cells. The number of

viable cells can be assessed in situ using two-photon

microscope probes introduced through injection needles to

measure cell autofluorescence [122]. The potential dangers

arising from needle puncture, as noted above, prevent any

further development of such measurements at present.

While it is evident that cell therapy cannot succeed

without an adequate nutrient supply, the relationship

between supply, nutrient concentrations and viable cell

density cannot yet be assessed directly. However, the link

observed between fall in transport and degeneration [117,

123] suggests that unless the solute transport pathways as

shown by post-contrast CM diffusion shows a normal

pattern, cell viability or activity is certainly compromised

[124]. Such assessment of nutrient supply is essential for

determining if treatment by a cell therapy approach is

feasible for any particular patient. Patients with abnormal

post-contrast diffusion patterns should not be offered cell

therapy treatments [124].

Are conditions in the treated disc permissive of matrix

production by implanted cells?

The major aim of cell therapies is to introduce cells which

will produce matrix to replace that degraded and lost and,

hence, to restore the biomechanical properties and height

of the disc. Even if implanted cells survive, disc repair

cannot be regarded as successful if these cells are unable to

produce sufficient matrix.

The environment of a degenerate disc is inimical to the

production and retention of matrix by disc cells. Cells of

degenerate discs produce inflammatory cytokines and

enzymes which degrade the disc matrix [21, 125–128];

these inflammatory molecules would also tend to degrade

matrix produced by implanted cells. Only discs in which

this inflammatory process has been dampened down [129],

possibly by gene therapy [130–132], would be appropriate

for disc repair. In addition, while variable levels of oxygen,

glucose, lactic acid and pH have been reported in degen-

erate discs, glucose and pH levels tend to be low [121, 133,

134] in agreement with results found in modelling studies

[135, 136]. To produce matrix, cells require an extracel-

lular environment with sufficient glucose and where the pH

is not acidic (the optimal pH range is pH 7.0–7.2); a fall in

pH to below pH 6.8 has disastrous consequences, as rates

of matrix production and matrix metabolism fall, but not

the rate of matrix degradation [137–140]. Levels of pH in

degenerate discs can fall to well below this value [133,

141]. In addition, matrix production is very sensitive to

extracellular osmolarity; the osmolarity, directly related to

proteoglycan content [142], must be high enough to stim-

ulate matrix production and retention [140, 143, 144]. As

one of the first signs of disc degeneration is loss of pro-

teoglycans [145], the low osmolarity found in degenerate

discs will reduce rates of matrix production and, indeed,

may stimulate expression of proteinases [140].

At present, even if nutrient supply can support implan-

ted cells, there are no non-invasive means of assessing

whether the intradiscal environment will support matrix

production. However, many needle-based probes exist or

are under development which would allow non-destructive

assessment of the intradiscal environment. Needle micro-

electrodes can be developed to provide assessment of

extracellular pH, oxygen and glucose [121, 146]. Needle

probes can also assess cell viability [122], as discussed

above. A recently developed needle micro-osmometer,

based on a microdialysis probe, provides a rapid and sen-

sitive way of measuring osmolarity in disc tissue [147]. If

the potential damage arising from needle puncture can be

discounted, development of such probes will help identify

discs whose nutrient pathways and extracellular environ-

ment permit cell survival and matrix production and

accumulation.

Conclusions

Cell therapy for the purpose of treating degenerate disc

disease is a very attractive concept. Interest in this

approach has stimulated research into the disc and led to a

substantial increase in knowledge of disc biology. How-

ever, it is difficult to see how cell therapy can be introduced

into routine clinical practice in the foreseeable future.

There are still many technical obstacles to be overcome.

Injection of cells into the disc is the basis of current cellular

repair approaches but needle puncture of the annulus may

impose a risk to disc health and the risks need to be

weighed against potential benefit. Alternative methods of

cell implantation and the realisation that repair of the
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annulus may be required in some cases move cell therapy

towards a more invasive and less attractive approach. The

potential that implanted cells will have to reverse the

degeneration process and repair the intervertebral disc in

human rather than animal discs remains to be determined.

Few diagnostic tests to determine whether cell therapies are

likely to succeed in an individual patient are available at

present, but definite exclusion criteria would be evidence of

major disc fissures or disturbance of nutrient pathways, as

measured by post-contrast MRI.

On the clinical side, there is no acceptable diagnostic

method at present, of deciding whether an individual

patient might benefit from cell therapy. This needs major

advances in understanding back pain that have defied

serious investigations over the last century. Moreover, it

should be realised that human disc regeneration and repair

by cell therapies are likely to be very slow and thought

should be given to appropriate rehabilitation protocols after

implantation.
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